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This is a crazy idea," the review read. Closing my
laptop lid, I added in my mind "and ... it will
never work," as a lump welled in my throat.
What we were proposing to do was simple yet
ambitious. Using functional magnetic resonance
imaging, we might better understand what goes
on in the minds of programmers as they read and
understand code. We had performed pilot
experiments with a neurobiologist, had
promising results, and encouraging words from
colleagues and reviewers. Still, the words, "this is
a crazy idea," echoed in our minds. Would it be
possible to break open the stale progress in
program comprehension research? After all,
researchers have been working on understanding
programmers since the 1970s. Could neuroimaging really help devising a conclusive
and comprehensive theory of program comprehension?

Credit: Jackie Niam

The Waves of Program Comprehension Research

Research in program comprehension has been a cycle of booms and busts. In the early
1970s and 1980s, the first wave of researchers were psychologists, using methods, such
as memory recall, to probe how programmers represent and process code in their mind.
As aresult, various theories and mechanisms were proposed, such as programming
plans and bottom-up comprehension, but no clear consensus and only few impulses for
programming research (including research on programming methodology, language
design, or education) emerged.

More than a decade passed without significant research progress and many leaving the
field.23 In the mid-2000s, a second wave of researchers emerged, now with "big code"
as the methodology of choice. Researchers mined traces of program comprehension as
manifested through programming activities in code repositories, such as GitHub,
asking statistical questions, such as whether long or short identifier names lead to more
defects. While this data has proved valuable, the community was drifting farther and
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farther away from understanding the inner workings of the programmer's mind, and so
did our ability to devise and validate a conclusive and explanatory theory of program
comprehension.

Meanwhile, in the field of psychology and cognitive neuroscience, considerable progress
has been made in building theories of fundamental cognitive processes, such as
language comprehension and logical reasoning. One important enabling technology was
brain imaging, including functional magnetic resonance imaging (fMRI),
electroencephalography (EEG), and functional near infrared spectroscopy (fNIRS).
These methods have revolutionized the understanding of cognitive processes and are
routinely used as a measurement tool in various disciplines, including psychology,
economics, and social sciences.24

From Idea to Implementation

Excited by the developments in brain imaging and its successful application in other
disciplines, the idea grew to revitalize the research efforts of program comprehension.
The first step was to build a team. We had to make several pitches to different scientists,
before we finally found a neurobiologist who would listen to our idea. With him (the
third author) on board, we started by absorbing the relevant neuroscience literature,
which required several years of investigation and an in-depth understanding of brain
imaging methods and what they can or cannot do.2¢ Most notably, brain-imaging
methods cannot directly observe cognitive processes, but only their neurobiological
correlates, which poses limitations on measurement resolution, experiment design, and
interpretability of results. For example, fMRI measures the change in the oxygenation
level of blood as brain activity occurs based on different magnetic properties of
oxygenated and deoxygenated blood. Oxygenation changes take time, adding a lag of a
few seconds (that is, the hemodynamic lagi2). This limits the temporal resolution of
fMRI to the order of seconds. As further constraint, one needs a baseline level of
activation as comparison to detect changes in the first place. Also financial constraints
play a role (one hour in our fMRI scanner costs about 150 €).

Further challenges lie in the experimental design. First, one needs to develop a set of
tasks that could be performed by programmers to measure the act (and only the act) of
program comprehension. This is in itself challenging, as there is no canonical set of
programming problems. Additionally, the tasks need to respect the limitations of brain
imaging methods, which affect code length and the time to accomplish the task. For
example, only 20 lines of code can be reasonably shown without allowing scrolling, and
they require about 30 to 60 seconds to understand (depending on complexity), so we
used 60 seconds as time limit for each snippet. Longer source code that requires
scrolling and longer task duration is also possible in today's scanners. After many
discussions and several pilot studies, we arrived at a set of general program
comprehension tasks covering basic (imperative) program structures and programming
problems inspired by introductory programming courses and textbooks.
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A second key ingredient is a method to subtract brain activity related to program
comprehension from brain activity unrelated to program comprehension, for example,
related to reading, speaking, or motor activity. If we just observe programmers while
they work with source code, we see a lot of activated brain areas, but we do not know
which are directly related to the act of program comprehension. To determine which
part of the brain is specifically activated during program comprehension, we apply a
subtraction method,? illustrated in Figure 2: We let the programmer identify syntax
errors in code as a baseline task, called control condition, which reveals the difference
between "glancing through" the code as compared to deeply understanding its
semantics. This subtraction method is conservative in order not to discover spurious
activations, such that, activation not related to the act of program comprehension is
filtered out as much as possible.

Program Comprehension Syntax Errors AContrast

Figure 2. The subtraction method: Program comprehension triggers also
unrelated brain activation, so we subtract brain activation during
identifying syntax errors to obtain brain activation specific to program
comprehension.

After several years of planning and many pilot tests outside an fMRI scanner, we had
arrived at an experimental design that could be executed inside the fMRI machine. We
presented our plans at the New Ideas and Emerging Results track at ESEC/FSE in 2012,
receiving very diverse feedback, ranging from "oh wow, this is so cool" to "that will
never work."

The First Program Comprehension Study of Its Kind

We conducted our first study with 17 students in an fMRI scanner understanding a
dozen code snippets (Figure 1 provides an overview of the experiment procedure), all
well prepared in terms of difficulty and duration needed to understand by the average
programmer.28 The results indicated that a specific network of brain areas in the left
hemisphere was used by participants to understand code, including areas related to
working memory, divided attention, and reading comprehension. Surprisingly, we did
not observe cognitive processes related to mathematical and logical reasoning, which
would be consistent with the perspective that programming is a formal, logical, and
mathematical process. The most striking result is a clear left-lateral activation during
program comprehension. In conjunction with the activation in semantically associated

areas (BAs 21 and 47), this suggests that program comprehension involves semantic
3110
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processes that are also relevant in language processing. Although neuroscience
researchers still argue about the differential role of the two hemispheres in semantic
processing in general, there is clear evidence on the dominant role of the left
hemisphere in language-related processing. If the role of the left hemisphere in program
comprehension can be consolidated in future studies, this would strengthen Dijkstra's
conjecture that a proper education in natural languages is imperative for successful
programmers.%

1. Comprehension 1. Rest 1. Syntax 1. Rest

For(int 1=e; icn; iss) for: int 1=9; icn; 1s+;

12. Comprehension 12. Rest 12. Syntax 12. Rest

public static void main(String[] args) { public static void main(String[] args) {
int result = 1; int result = 1:
int num = 4; int num = 4;

while (num > 1) { while (num > 1) {
result = result * num; result == result * num;
num--; num--;
)y 1
System.out.println(result); System.out.println(result).;

I }

Figure 1. Experiment design of the first fMRI study2%: participants
understood a source code snippet (60s), followed by a rest period to let the
oxygenation level return to the baseline (30s), followed by identifying
syntax errors (30s), and another rest period (30s); this process was
repeated for 12 times.

Further Studies

Although standard in neuroscience, the complexity of the process and machinery led to
the question of how reliable the results are—doubts were rising. Following best practice
in neuroscience, we replicated our study twice with varying participants,
comprehension tasks, and source code snippets. Especially, the small initial sample
drove us to collect more data to increase statistical power. However, as more studies are
following with more specific questions, leading to smaller differences in conditions, we
need to increase the sample size. Unfortunately, without upfront experience about the
expected effect size, it is difficult to recommend a sample size. In the replications, we
reliably found activation in the same brain areas,232Z which increased our confidence in
the validity of our setup and results. This reliability of the setup is possibly even more
valuable than the individual results we obtained so far.

Could neuroimaging really help devising a conclusive and comprehensive theory of
program comprehension?
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Further evidence on the validity of our results came also from other research teams,
who replicated and extended our experimental design. Inspired by our study, Floyd and
others changed the contrast condition to review source code (instead of finding syntax
errors) and added a third condition to review natural-language prose.8 They could also
replicate a subset of the brain areas that we found. Lee and others replicated our results
with EEG. In contrast to fMRI, EEG directly measures the electrical responses of
neurons with high temporal resolution (that is, in the order of milliseconds), but with a
limited spatial resolution. They found brain areas that we also found, with the
additional insight that programming expertise modulates the respective activation
strength.1Z

Despite all these results, it is important to note that typically, no brain area is
specifically associated with one cognitive process, but with several. For example, BAs
21, 44, and 47 are also associated with spoken language, but since we did not require
participants to give a spoken response, it is not relevant for our setting. Open databases,
such as BrainMap or Neurosynth, let us identify which tasks and cognitive processes are
associated with a selected brain region (Genon and others give a summary of how we
can map cognitive processes to brain areas!?).

The Third Wave of Program Comprehension Research

Other research teams also adopted a neurocognitive perspective on program
comprehension: Kosti and others used our experiment design to record EEG data and
found a correlation of EEG activation with subjective rating of difficulty.2> Studies using
fNIRS found activation in frontal parts of the brain depending on the kind of task
(memorizing variable names vs. mental arithmetic)*¢ and task difficulty.22 Duraes and
others used fMRI to observe the neural activation during the location of code defects,
identifying a specific activity pattern when a bug was spotted and confirmed.& Studies
using EEG revealed a relationship between mental load and expertise228 such that with
lower expertise, the same tasks require higher mental load. This is because experts have
developed an efficient cognitive representation, so they can manage more information
without requiring a larger working memory capacity. This can be observed in many
areas other than program comprehension, for example, with expert chess players or
superior memorizers. They do not have an exceptionally large working memory
capacity, yet they can recall large amount of information by using specific encoding
strategies, that is, certain configurations that imply the positions of chess figures2 or
visual objects linked to spatial landmarks28 Compared to non-experts, this is reflected
in a less pronounced or different activation pattern that develops concomitant with
their growing expertise.22 The mental load is also reflected in the response of the default
mode network, which is typically activated during self-referential processing and
deactivated during a cognitively demanding task to avoid interference. The higher the
cognitive load, the stronger the deactivation.2 We observed this effect also in our recent
study, such that more complex tasks are related with a stronger deactivation of the
default mode network.22
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A Multimodal Approach

Despite promising results, the community has realized quickly that a single imaging or
measurement method is not sufficient to understand the full complexity of the cognitive
processes involved in program comprehension and, more importantly, to connect the
cognitive processes to the programmer's behavior. Only a multimodal approach is able
to achieve this. As an example, a recent study23 suggests that the integration of eye
tracking and fMRI is able to draw this connection by connecting eye movement patterns
and brain activation to the programmer's strategy of program comprehension (the eye
movement pattern observed suggests that programmers follow program identifiers
during top-down comprehension). Fakhoury and others combined fNIRS and eye
tracking showing that, when participants are examining unsuitable identifier names,
cognitive load increases.Z A multimodal setting is able to better identify expert
programmers, as Lee and others showed by extending their EEG study with eye
tracking.1® Huang and others have investigated programmers' brains while
manipulating data structures, such as binary trees, in contrast to mental rotations with
fMRI and fNIRS. The study not only provided insights into programmers' cognitive
processes, but also showed that fMRI is more sensitive for identifying cognitive
processes than fNIRS (in terms of statistical power and spatial resolution).t
Nevertheless, NIRS may be an interesting alternative in certain settings, as it is
cheaper, less restrictive, and easier to combine with other modalities.

Neuroimaging offers a unique opportunity to understand, build, and test theories of
program comprehension like never before.

fMRI and EEG can also be combined to complement their strengths and weaknesses. 13
For example, Bledowski and others mapped the stages of retrieving information from
working memory to the fast neuronal response of different brain areas, shedding light
on how the retrieval process unfolds temporally and spatially.

fMRI not only lets us dive deeper into cognitive processes, but it also allows us to
decode brain activity to predict the tasks (referred to as reverse inference).24 Floyd and
others trained a classifier based on the data of their replication study to predict the kind
of task participants were completing (79% accuracy). Future studies might reveal
whether specific aspects of a task (for example, words vs. numbers being manipulated
in source code) are represented in specific brain areas or in different activation
strengths.

Entering the Neuroage

Programming research has entered the Neuroage. Neuroimaging offers a unique
opportunity to understand, build, and test theories of program comprehension like
never before. It empowers researchers to obtain insights into the cognitive processes
involved and their connection to the programmer's behavior. This way, the research
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community will be able to understand why, how, and to what extent program
comprehension takes place, not only whether. For example, rather than stating that
programmers tend to process loops faster than recursive structures, we would like to
quantify how and to what extent the use of loops or recursion influences task
completion time and which cognitive processes are responsible for this difference (for
example, keeping track of intermediate results in recursive computations easily exceeds
the programmer's working memory), and how this is modulated by expertise.

Although research has started off just a few years ago, the small but growing community
already provided interesting insights into the cognitive processes of program
comprehension. By adopting neuroimaging methods, researchers may overcome the
stale progress of program comprehension by better understanding accompanying
cognitive subprocesses. This progress can pave the way toward a theory of program
comprehension. Maybe program comprehension is not a unique cognitive process, but
just a special form of problem solving? Maybe cognitive modeling (for example, using
cognitive architectures like ACT-R, which let researchers describe a cognitive process as
a series of discrete operations2t) can help to describe the fundamental cognitive
processes underlying program comprehension? We cannot know, yet, but having
demonstrated the validity and usefulness of neuroimaging methods for programming
research, the real fun (and hard work) begins. With these methods, we might be able to
understand why programmers make mistakes, why some code is more difficult than
other, what programmer expertise looks like, and how we can best train and prepare
programmers. Ultimately, these are steps forward to reach a more conclusive and
comprehensive theory of program comprehension.

Maybe program comprehension is not a unique cognitive process, but just a special form
of problem solving?

We believe this research direction can also feed back to neuroscience research, such that
we may discover new nuances of cognitive processes. Specifically, our setup requires
participants to mentally execute code, so program comprehension is more than reading
comprehension, and it might be different from other mental simulations, say thinking
through a cooking recipe. We have reached an exciting new point in studying the human
programmer, and we cannot wait to see where the research community will take it.
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